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Graphs and homomorphisms

Definition

A digraph is a pair G = (G ;→), where G is the set of
vertices and → ⊆ G 2 is the set of edges.

A relational structure is a tuple G = (G ; E1, . . . ,Ek), where
G is the underlying set and Ei ⊆ Gni is an ni -ary relation.

Definition

A homomorphism from a digraph G to H is a map f : G → H
that preserves edges

a→ b in G =⇒ f (a)→ f (b) in H.

We write G→ H if there exists a homomorphism from G to H.



Constraint satisfaction problem Algebraic approach Reflexive digraphs

Constraint satisfaction problem (CSP)

Definition

For a finite relational structure H we define

CSP(H) = {G | G→ H }.

Example

CSP( s ss�A ) is the class of three-colorable graphs.

CSP( ss) is the class of bipartite graphs.

G = = H

f : G→ H
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The computational complexity of CSP

The membership problem for CSP(H)

always decidable in nondeterministic polynomial time (NP)

is decidable in polynomial time (P) for some H

Dichotomy Conjecture (Feder, Vardi, 1993)

For every finite structure H the membership problem for CSP(H)
is in P or NP-complete.

The dichotomy conjecture holds when H
is an undirected graph (Hell, Nešeťril), or

has at most 3 elements (Bulatov), or

a smooth directed graph (Barto, Kozik, Niven).

Open for directed graphs.
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Example: solving a system of equations

(∃x , y , z ∈ Z5)(x + y = z ∧ x + x = y ∧ z = 1)

m
(∃x , y , z ∈ Z5)((x , y , z) ∈ F1 ∧ (x , x , y) ∈ F1 ∧ z ∈ F2),

where F1 = { (x , y , z) ∈ Z3
5 : x + y = z } and F2 = {1}.
m

(∃f : {1, 2, 3} → Z5)((f (1), f (2), f (3)) ∈ F1 ∧
(f (1), f (1), f (2)) ∈ F1 ∧ f (3) ∈ F2)

m
∃f : G→ H,

where G = ({1, 2, 3}; E1,E2), H = (Z5; F1,F2)

E1 = { (1, 2, 3), (1, 1, 2) }, E2 = {3}.
m

G ∈ CSP(H)
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CSP reductions: cores

Lemma

If H1 ↔ H2, then CSP(H1) = CSP(H2). In particular, if
r : H→ H is a retraction (r 2 = r), then CSP(H) = CSP(H|r(H)).

Lemma

For every finite relational structure H1 there exists H2 such that

1 H2 is a directed graph (with unary relations),

2 H2 is a core, i.e., every endomorphism is bijective,

3 every singleton unary relation {a} is in H2, and

CSP(H1) is polynomial time equivalent to CSP(H2).
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CSP reductions: polymorphisms

Definition

A polymorphism of H is a homomorphism p : Hn → H, that is an
n-ary map that preserves edges

a1 → b1, . . . , an → bn =⇒ p(a1, . . . , an)→ p(b1, . . . , bn).

Pol(H) = { p | p : Hn → H } is the clone of polymorphisms.

Lemma

If H1, H2 have the same underlying set and Pol(H1) ⊆ Pol(H2),
then CSP(H2) is polynomial time reducible to CSP(H1).

Question

Which polymorphisms guarantee that CSP(H) is in P?
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Nice polymorphisms

Theorem

CSP(H) is in P if Pol(H) contains one of the following:

a semilattice operation (Jevons et. al.)

x ∧ y ≈ y ∧ x , x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z , x ∧ x ≈ x .

a near-unanimity operation

p(y , x , . . . , x) ≈ p(x , y , x , . . . , x) ≈ · · · ≈ p(x , . . . , x , y) ≈ x ,

a totally symmetric idempotent operation (Dalmau, Pearson),

{x1, . . . , xn} = {y1, . . . , yn} =⇒ p(x1, . . . , xn) ≈ p(y1, . . . , yn)

a Maltsev operation (Bulatov, Dalmau)

p(x , y , y) ≈ p(y , y , x) ≈ x ,



Constraint satisfaction problem Algebraic approach Reflexive digraphs

Nice polymorphisms cont.

Theorem

CSP(H) is in P if Pol(H) contains one of the following:

Edge operations (Idziak, Marković, McKenzie, Valeriote,
Willard)

p(y , y , x , x , . . . , x) ≈ x ,

p(x , y , y , x , . . . , x) ≈ x ,

p(x , x , x , y , . . . , x) ≈ x ,

...

p(x , x , x , x , . . . , y) ≈ x .

Jónsson operations (Barto, Kozik),

Willard operations (Barto, Kozik).
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Weak near-unanimity

Theorem (McKenzie, Maróti)

For a locally finite variety V the followings are equivalent:

V omits type 1 (tame congruence theory),

V has a Taylor term,

V has a weak near-unanimity operation:

p(y , x , . . . , x) ≈ · · · ≈ p(x , . . . , x , y) and p(x , . . . , x) ≈ x .

Theorem (Bulatov, Larose, Zádori)

If H is a core and does not have a Taylor (or weak near-unanimity)
polymorphism, then CSP(H) is NP-complete.

Algebraic dichotomy conjecture

If H is a core and has a weak near-unanimity polymorphism, then
CSP(H) is in P.
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Algebraic results

Theorem (Barto)

If a finite relational structure has Jónsson polymorphisms

x = d0(x , y , z),

di (x , y , x) = x for all i ,

di (x , y , y) = di+1(x , y , y) for even i ,

di (x , x , y) = di+1(x , x , y) for odd i ,

dn(x , y , z) = z ,

then it has a near-unanimity polymorphism.

Valeriote’s Conjecture

If a finite relational structure has Gumm polymorphisms, then it
has an edge polymorphism.
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Algebraic results for digraphs

Theorem (Larose, Zádori)

If a finite poset has Gumm polymorphisms

x = d0(x , y , z),

di (x , y , x) = x for all i ,

di (x , y , y) = di+1(x , y , y) for even i ,

di (x , x , y) = di+1(x , x , y) for odd i ,

dn(x , y , y) = p(x , y , y), and

p(x , x , y) = y ,

then it has a near-unanimity polymorphism.

Theorem (Kun, Szabó)

There is a polynomial algorithm for checking if a poset has a
near-unanimity polymorphism.
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Algebraic results for digraphs

Theorem (Larose, Loten, Zádori)

If a finite symmetric reflexive digraph has Gumm polymorphisms,
then it has a near-unanimity polymorphism.

Theorem (Kazda)

If a finite digraph has Maltsev polymorphism

p(y , x , x) ≈ p(x , x , y) ≈ y

then it has majority polymorphism

m(x , x , y) ≈ m(x , y , x) ≈ m(y , x , x) ≈ x .

Conjecture

If a finite digraph has Gumm polymorphisms, then it has an
near-unanimity polymorphism.
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Main Result

Theorem

If a finite reflexive digraph G has Gumm polymorphisms

x = d0(x , y , z),

di (x , y , x) = x for all i ,

di (x , y , y) = di+1(x , y , y) for even i ,

di (x , x , y) = di+1(x , x , y) for odd i ,

dn(x , y , y) = p(x , y , y), and

p(x , x , y) = y ,

then it has Jónsson polymorphisms (same as above, but
p(x , y , y) ≈ y).
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Connectedness

Definition

A digraph G is connected if for all a, b ∈ G there exists a path

a = a0 → a1 ← a2 → a3 ← · · · → an = b

with some pattern.

G is strongly connected if for all a, b ∈ G there exist paths

a = a0 → a1 → a2 → a3 → · · · → an = b,

a = b0 ← b1 ← b2 ← b3 ← · · · ← bn = b.

G is extremely connected if for all a, b ∈ G there exist a path

a = a0 ↔ a1 ↔ a2 ↔ a3 ↔ · · · ↔ an = b.
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Structure on GH

Definition

Let G, H be digraphs and f , g ∈ HG be maps. We write f → g iff

a→ b in G =⇒ f (a)→ g(b) in H.

Lemma

The set of homomorphisms from G to H is

HG = { f ∈ HG | f → f }.

If G is reflexive, then the Cartesian power of G is

Gn = G{	 	 ··· 	}.

If f → g in HGn
and f1 → g1, . . . , fn → gn in GF, then

f (f1, . . . , fn)→ g(g1, . . . gn) in HF.



Constraint satisfaction problem Algebraic approach Reflexive digraphs

Connectedness on GG

Theorem

Let G be a finite reflexive digraph admitting Gumm operations. If
G is [strongly, extremely] connected, then so is GG.

Proof.

Take a minimal counterexample G.

{id} is a [strong, extreme] component of GG.

If G admits a ternary operation d satisfying

d(x , y , y) ≈ x , or
d(x , y , x) ≈ d(x , x , y) ≈ x ,

then d(x , y , z) is the first projection.

Use the Gumm identities (or Hobby-McKenzie operations for
omitting types 1 and 5) to show that G satisfies x ≈ y .



Constraint satisfaction problem Algebraic approach Reflexive digraphs

Connectedness on I2(G)

Lemma

Let G be a finite reflexive digraph admitting Gumm operations. If
G is [strongly, extremely] connected, then so is the digraph

I2(G) = { f ∈ GG2 | f (x , x) ≈ x }.

of idempotent binary polymorphisms of G.

Definition

A digraph K ≤ GH is a idempotent G-subalgebra, if it is closed
under the idempotent polymorphisms of G.

Corollary

Let G be a finite reflexive digraph admitting Gumm operations. If
G is strongly connected, then it is extremely connected.
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Unrefinable edges

Definition

An edge f → g in GG is refinable if there exists h ∈ GG such that

f → h→ g and f 6= h 6= g , and

h(x) ∈ {f (x), g(x)} for all x ∈ G .

Lemma

If f → g is non-refinable, then [[f 6= g ]] is strongly connected.

Proof.

1 Take a nonconstant ϕ : [[f 6= g ]]→ GG|{f ,g} homomorphism.

2 Look at the refinement f → h→ g where

h(x) =

{
(ϕ(x))(x), if x ∈ [[f 6= g ]]

f (x), otherwise.
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Getting Jónsson operations

Theorem

If a finite reflexive digraph G has Gumm polymorphisms, then it
has Jónsson polymorphisms.

Proof.

The digraph { f ∈ G3G3

| f (x , y , x) = (x , y , x) } is connected.

Connect id with s(x , y , z) = (z , y , z) via non-refinable links.

We want a connection id = f0, f1, . . . , fn = s such that
x = π1(f0), π1(f1), . . . , π1(fn) = z are Jónnson operations.

Bad link: [[f 6= g ]] contains both (a, a, b) and (c , d , d), then
[[f 6= g ]] ⊆ C 3 for some strongly connected component C .

C is extremely connected, so we can replace the bad (f , g)
link with f = h0 ↔ h1 ↔ · · · ↔ hn = g .

Refine all these links and we have no more bad links.
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Comments

Let G be a poset, or a reflexive symmetric digraph. If f → g
is a non-refinable edge in GG, then |[[f 6= g ]]| = 1.

This is not true for reflexive digraphs:

1 2

0

Dismantability is defined via “one-point elementary
retractions”.

Theorem

If a finite symmetric digraph G admits Gumm operations, then it
admits Jónsson operations.
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Decidability of NU

Theorem

If a finite reflexive digraph G admits a sequence of Jónsson
operations, then it has one with length at most 16 · |G |7.

Corollary

Given a finite reflexive digraph, it is decidable in polynomial time if
it admits a near-unanimity operation.

Proof.

Use CSP and the bounded width algorithm.

Theorem (Maróti)

Given a finite algebra A, it is decidable if it has a near-unanimity
term.



Constraint satisfaction problem Algebraic approach Reflexive digraphs

Decidability of NU

Theorem

If a finite reflexive digraph G admits a sequence of Jónsson
operations, then it has one with length at most 16 · |G |7.

Corollary

Given a finite reflexive digraph, it is decidable in polynomial time if
it admits a near-unanimity operation.

Proof.

Use CSP and the bounded width algorithm.

Theorem (Maróti)
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Totally symmetric operations

Definition

A digraph has the fixed clique property, if every endomorphism
preserves some clique of the digraph.

Lemma

Every finite connected reflexive digraph that admits a
near-unanimity operation has the fixed clique property.

Lemma

Every finite reflexive digraph that admits a near-unanimity
operation also admits cyclic idempotent operations of all arities.

Theorem

Every finite reflexive digraph that admits an NU operation also
admits totally symmetric idempotent operations of all arities.
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Thank you!
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